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SUMMARY

A �nite di�erence method is presented for solving the 3D Navier–Stokes equations in vorticity–velocity
form. The method involves solving the vorticity transport equations in ‘curl-form’ along with a set
of Cauchy–Riemann type equations for the velocity. The equations are formulated in cylindrical co-
ordinates and discretized using a staggered grid arrangement. The discretized Cauchy–Riemann type
equations are overdetermined and their solution is accomplished by employing a conjugate gradient
method on the normal equations. The vorticity transport equations are solved in time using a semi-
implicit Crank–Nicolson=Adams–Bashforth scheme combined with a second-order accurate spatial dis-
cretization scheme. Special emphasis is put on the treatment of the polar singularity. Numerical results
of axisymmetric as well as non-axisymmetric �ows in a pipe and in a closed cylinder are presented.
Comparison with measurements are carried out for the axisymmetric �ow cases. Copyright ? 2003
John Wiley & Sons, Ltd.

KEY WORDS: vorticity–velocity formulation; Cauchy–Riemann equations; treatment of polar
singularity in cylindrical co-ordinates

1. INTRODUCTION

Most incompressible Navier–Stokes algorithms are based on solving the equations in the
primary pressure and velocity variables. In this formulation, it is necessary to solve the mo-
mentum equations for the velocity �eld along with a derived Poisson equation for the pressure.
The role of the pressure is to ensure a solenoidal velocity �eld (continuity) and as the Poisson
equation does not satisfy this a priori, some kind of coupling to the continuity equation is
needed. Such coupling technique have been developed under names as SIMPLE, PISO and
fractional step methods (e.g. References [1–4]). An alternative approach is to eliminate the
pressure from the momentum equations by applying the curl operator on these, and introduc-
ing the vorticity as the curl of the velocity. This results in the vorticity–velocity formulation
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30 M. O. L. HANSEN ET AL.

of the Navier–Stokes equations, in which the momentum equations are replaced by vorticity
transport equations

@�
@t
+∇× (�×V)=�∇2� (1)

where V and � denote the velocity and vorticity vector, respectively, and � is the kinematic
viscosity. The pressure Poisson equation is replaced by a set of Cauchy–Riemann (C–R)
type equations, consisting of the de�nition of vorticity (2), and the continuity equation (3),
respectively.

� = ∇×V (2)

∇ ·V = 0 (3)

From its de�nition, the vorticity �eld has to satisfy the solenoidal constraint:

∇ · �=0 (4)

Further, the following compatibility constraint must be satis�ed, ensuring zero net mass �ow
across the boundary of the computational domain b:∫ ∫

b
V · n dA=0 (5)

where n denotes the unit normal vector on the boundary and dA is an in�nitesimal surface
area around the normal vector. By exploiting Equation (4), the vorticity transport equations
can take di�erent forms. Employing the vector identity, ∇×∇×�=∇(∇ · �) − ∇2�, the
Laplacian on the right-hand side of Equation (1) can be rewritten as

∇2�=−∇×∇×� (6)

The di�erence between these two forms is that the ‘curl form’ of each vorticity transport
equations contains a 2D Laplacian for the actual vorticity component and mixed derivative
terms with the two other vorticity components (see e.g. the transport equations in cylindrical
co-ordinates Equations 9–11), whereas the ‘Laplacian form’ contains derivatives in all space
directions but no mixed derivatives. Solving all three vorticity transport equations simultane-
ously, as shown by Guj and Stella [5] and Shen and Ta Phuoc [6], preserves the divergence
of the vorticity. Taking the divergence of the vorticity transport equations in ‘curl form’ and
using the operator identity ∇ · (∇× f)=0, we get

@
@t
(∇ · �)=0 (7)

Thus, if the vorticity is solenoidal at time t= to, it will remain so at later time and for this
reason we used the ‘curl-form’.
The advantage of the vorticity–velocity formulation is that the vorticity is determined di-

rectly from the equations with the same accuracy as the velocity. This latter may be of
importance when studying vortex dominated �ows where the vorticity �eld is known to play
an important role in the dynamics of organized �ow structures. Furthermore, as discussed
by Speziale [7], non-inertial e�ects enter only into the solution through the implementation
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of initial and boundary conditions. For many practical applications, however, the pressure is
needed, e.g. to determine the forces on a construction. Also, there exists very little experience
using eddy viscosity turbulence models in 3D vorticity–velocity CFD models.
In the discretized 3D vorticity–velocity formulation, the Cauchy–Riemann type equations

for the velocity �eld constitute an overdetermined system. This problem can be overcome by
applying the curl operator on the vorticity de�nition equation and exploiting the continuity
equation to obtain three Poisson equations, one for each of the components of the velocity
vector.

∇2V=−∇×� (8)

The Poisson equation formulation, however, does not guarantee a solenoidal velocity �eld,
and we are left with the same problem as in the primitive variables formulation. In spite of
this, in many studies dealing with 3D vorticity–velocity formulations the Poisson equations
were employed to determine the velocity components (e.g. References [5, 8–15]). Recently,
various versions of the Poisson equations using the continuity equation as a third equation have
been employed to obtain a solenoidal velocity �eld [6, 16, 17]. But only few investigations
have treated the Cauchy–Riemann type system directly [18–20]. Osswald et al. [18] devised a
technique that eliminated the linear dependent discretized C–R equations to balance the number
of equations to the number of unknowns. Further, they developed a direct inversion algorithm
on the remaining equations which, however, required access to a large amount of computer
storage. Gatski et al. [19] employed an iterative least squares method (Kaczmarz algorithm)
on the entire overdetermined system of discretized C–R equations. The convergence of this
method is, however, known to be slow and depends strongly on the relaxation parameter.
This was shown in Hansen [21], who instead applied a conjugate gradient method to solve
the least squares problem (see Section 3.3).
Up to now, the vorticity–velocity formulation of the 3D Navier–Stokes equations has only

been employed on a limited number of �ow cases, mostly described in Cartesian co-ordinates.
One recent exception, however, is the general formulation of Bertagnolio and Daube [22].
In the past years, the authors have derived a general methodology for the solution of the

vorticity–velocity form of the Navier–Stokes equations based on solving the Cauchy–Riemann
equations, as described in Hansen et al. [20]. The algorithm presented herein is a further
development of this method in cylindrical co-ordinates that also treats the polar singularity at
the axis of the cylindrical domain.
The paper is organized as follows. In Section 2 the governing equations and their boundary

conditions in cylindrical co-ordinates are presented. Particular attention is given here to the
polar singularity that appears at the axis of the cylindrical domain. Section 3 describes the
numerical technique employed to solve the equations. In Section 4 results are shown and
compared to measurements for the cases of a developing �ow in a pipe and a rotating �ow in
a closed cylinder. Both axisymmetric and non-axisymmetric (3D) �ows are treated. Finally,
in Section 5 conclusions and recommendation for future works are outlined.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

We now consider a cylindrical co-ordinate system (r; �; z) with the velocity vector V=(Vr; V�;
Vz) and the vorticity �=(!r;!�; !z). For each vorticity component, the vorticity transport
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equations are written in curl-form as follows:
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The vorticity components are de�ned as
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1
r
@Vz
@�

− @V�
@z

(12)
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(14)

and the corresponding continuity equation reads

@
@r
(rVr) +

@V�
@�

+ r
@Vz
@z
=0 (15)

The calculation domain is limited by r∈[0; R], �∈[0; 2�] and z∈[0; Lz] where R denotes
the radius to the lateral boundary, Lz is the length of the domain and � is the azimuthal
angle de�ned positive counter-clockwise. In the �ow cases that will be considered in the
following the lateral boundary is always a solid wall, whereas the plane de�ned by z=0 is
either a �xed solid wall or an in�ow plane and the endplane at z=Lz is either a (translating
or rotating) solid wall or an out�ow plane. At solid walls no-slip conditions are assumed for
all velocity components. Boundary conditions for the vorticity components are constructed
from the de�nition equations, Equations (12)–(14). To summarize, the boundary conditions
for velocity and vorticity are de�ned as follows:
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Lateral boundary (r=R; 06�62�; 06z6Lz):

Vr =0; V�=0; Vz=0

!r =0; !�=−@Vz
@r
; !z=

1
R
@(rV�)
@r

Endwalls (06r6R; 06�62�; z=0 or z=Lz):

Vr = Ṽr ; V�= Ṽ�; Vz=0

!r =−@V�
@z
; !�=

@Vr
@z
; !z=0

In�ow boundary (06r6R; 06�62�; z=0):

Vr =0; V�=0; Vz= Ṽz
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Out�ow boundary (06r6R; 06�62�; z=Lz):
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The boundary conditions are imposed such that the velocity conditions are used in the C–R
type system, Equations (12)–(15), and the vorticity conditions are employed in the trans-
port equations, Equations (9)–(11). A tilde means that the variable is given as a prescribed
constant. As the transport equation are written in curl-form, no boundary conditions are nec-
essary for the solution of the !z-transport equation at the boundaries z=0 and Lz. However,
as mixed derivatives of !z appear in the two other transport equations, it is necessary to
attribute some value to !z at the in- and out-�ow planes. Furthermore, it should be noted
that although no boundary conditions are needed explicitly for Vr and V� at in- and out-�ow,
Vr and V� are imposed implicitly in the boundary conditions for the transport equations.
Periodic boundary conditions are employed for all variables in the �-direction.
At the axis of the cylindrical domain, r=0, a polar singularity appears. To overcome the

di�culty, we introduce Cartesian components (Vxo; Vyo) and (!xo; !yo) as unknowns at the
axis. The relations between the cylindrical and Cartesian variables read

Vr = Vx cos �+ Vy sin � (16)

V� = Vy cos �− Vx sin � (17)

!r =!x cos �+!y sin � (18)

!� =!y cos �−!x sin � (19)
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For the z-direction components, the velocity Vz is well de�ned and no problem is posed. The
vorticity !z, however, is singular. To overcome the di�culty, !z is transformed in Cartesian
co-ordinates by using the relations (16)–(17) and

x= r cos �

y= r sin �

Then Equation (14) takes the Cartesian form, (!z=@Vy=@x − @Vx=@y), on the axis.
The actual implementation of these terms in the discretized system of equations will be

described in the next section.

3. NUMERICAL METHOD

The computational domain is de�ned by the mesh points ri= i�r, �j=(j− 1)�� and zk=(k −
1)�z where i∈[0; NR], j∈[1; NT ], k∈[1; NZ ], and �r=R=NR, ��=2�=(NT−2), �z=Lz=(NZ−1).
Thus, in the r-direction i=0 corresponds to the axis of the cylindrical domain, ro=0, and the
overlapping of grid points in the �-direction ensures the periodicity of the involved variables,
i.e. f |j=1 =f |j=NT−1 and f |j=NT =f |j=2. To advance the solution in time requires
two steps. First, the vorticity �eld � is found by solving the vorticity transport equations,
Equations (9)–(11), with given velocity �eld V. Next, the new velocity �eld V is found by
solving the C–R system, Equations (12)–(15), with � given from the previous step. Finally,
the boundary conditions for the vorticity are updated from the de�nition equations and the
solution procedure is progressed to the next time step.
The governing equations are solved by employing a standard second-order accurate �nite

di�erence technique for the transport equations and a box scheme for the Cauchy–Riemann
system.

3.1. Solution of the transport equations

To advance the transport equations, Equations (9)–(11), in time, we employ a semi-implicit
Crank–Nicolson type scheme for the di�usion terms and an explicit Adams–Bashforth extrap-
olation discretization for the convection-stretching terms. Let �t denote the time increment,
Ld be the di�usion operator and Lc the convection-stretching operator, the transport equations
are discretized in a Helmholtz equation form:

�n+1 − �t
2
Ln+1d (�)=�n + �t

2
[Lnd(�)− 3Lnc(�) + Ln−1c (�)] (20)

To ensure that the discrete vorticity obeys the constraint ∇ · �=0, the three Helmholtz
equations are solved simultaneously on a staggered grid as shown in Figure 1. The collocation
points of the vorticity components are de�ned as follows (see Figure 1), so that only the
normal vorticity component is stored on each cell face:

• The vorticity component !r is de�ned at nodes (i�r; (j+1=2)��; (k+1=2)�z) for 16i6NR,
16j6NT , 16k6NZ − 1.
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Figure 1. Location of staggered vorticity vector.

• The vorticity component !� is de�ned at nodes ((i + 1=2)�r; j��; (k + 1=2)�z) for
06i6NR − 1; 16j6NT , 16k6NZ − 1.

• The vorticity component !z is de�ned at nodes ((i+1=2)�r; (j+1=2)��; k�z) for 06i6
NR−1; 16j6NT , 16k6NZ .

The spatial discretization is carried out at the same locations by employing standard second-
order accurate central di�erences. The velocity vector is not staggered, but located on the
vertices in the grid.

3.2. Polar singularity of the transport equations

The !r-equation is discretized at the points (i; j+ 1
2 ; k+

1
2). At the centre axis (i=0), all terms

vanish and the equation is identically satis�ed. At the �rst points away from the centre axis,
the equation contains no radial derivatives. Hence, all the variables needed are well de�ned
and the equation can be solved without any problems.
The !�-equation is discretized at the points (i + 1

2 ; j; k +
1
2). At the �rst points (i=0),

the equation contains a singular term arising from the radial derivative of the di�usion
term, (1=r@(r!�)=@r − 1=r@!r=@�) |r=0. To overcome the di�culty, it is transformed into
Cartesian co-ordinates, (@!y=@x − @!x=@y) |r=0. The second and last non-de�ned term is
(!rV�−!�Vr) |r=0 which appears in the discretization of the radial derivative of the convection
and stretching terms. This term is also transformed into Cartesian co-ordinates, taking the form,
(!xVy −!yVx) |r=0.
The !z-equation is discretized at the points (i + 1

2 ; j +
1
2 ; k). At the �rst points to be

discretized (i=0), the same problem as in the !�-equation occurs. In this case the di�cult
terms, (r@!z=@r− r@!r=@z) |r=0 and (r!rVz− r!zVr |r=0), both contain multiplication by r and
they are simply put equal to zero.
In order to determine the values of !x and !y at the singular axis, we use two steps. First,

the Cartesian components are evaluated at r=r1 using the following two relations:

(!x)1; j; k+1=2 = [((!r)1; j+1=2; k+1=2 + (!r)1; j−1=2; k+1=2) cos �j

− ((!�)3=2; j; k+1=2 + (!�)1=2; j; k+1=2) sin �j]=2 (21)
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(!y)1; j; k+1=2 = [((!r)1; j+1=2; k+1=2 + (!r)1; j−1=2; k+1=2) sin �j

+((!�)3=2; j; k+1=2 + (!�)1=2; j; k+1=2) cos �j]=2 (22)

Next, the Cartesian components at r=0 are approximated as the average of the values at
r=r1:

(!xo)k+1=2 =
1

NT − 2
NT−1∑
j=2

(!x)1; j; k+1=2 (23)

(!yo)k+1=2 =
1

NT − 2
NT−1∑
j=2

(!y)1; j; k+1=2 (24)

In employing this procedure, all singular terms are now de�ned and the matrix of the
transport equation is established. The matrix is solved by an iterative line-relaxation method
which converges very fast.
Note that the treatment of the singular axis does not in�uence the divergence of the vorticity

transport equations, such that the divergence of the vorticity (∇·�=0) is conserved correctly.

3.3. Solution of the Cauchy–Riemann equations

The Cauchy–Riemann equations, Equations (12)–(15), constitute a set of four �rst order
di�erential equations to be solved for the velocity (Vr; V�; Vz).
The discretization of the continuity equation, Equation (15), is based upon Gauss’ theorem:∫ ∫ ∫

v
∇ ·V dv=

∫ ∫
S
V · n dS (25)

where v denotes the volume of the cell, n is the outward normal vector and dS is the
incremental of the surface bounding the cell. Employing Equation (25) and approximating
Equation (15) for a cell, as shown in Figure 1, yields:

(rVr)i+1; j+1=2; k+1=2 − (rVr)i; j+1=2; k+1=2
�r

+
(V�)i+1=2; j+1; k+1=2 − (V�)i+1=2; j; k+1=2

��

+ ri+1=2
(Vz)i+1=2; j+1=2; k+1 − (Vz)i+1=2; j+1=2; k

�z
=0 (26)

Since the velocities are located at the vertices, the term (Vz)i+1=2; j+1=2; k is found as the mean
of the values for Vz at the vertices (i; j; k); (i + 1; j; k); (i + 1; j + 1; k) and (i; j + 1; k).
The discretization of the vorticity de�nition equations (12)–(14) is based upon Stokes’

theorem: ∮
V · dl=

∫ ∫
S
(∇×V) · n dS=

∫ ∫
S
� · n dS (27)

where dl is the in�nitesimal tangent vector to the closed curve enclosing the open surface
denoted S. In cylindrical co-ordinates it is noted that the radial vorticity component !r is
normal to the plane i=constant, the tangential vorticity component !� is normal to the plane
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j=constant and the axial vorticity component !z is normal to the plane k=constant. This is
illustrated in Figure 1 and makes the evaluation of Equation (27) straightforward.
As an example, Equation (27) is used at a plane i=const to derive the discrete !r de�nition

equation:

ri��(V�)i; j+1=2; k +�z(Vz)i; j+1; k+1=2 − ri��(V�)i; j+1=2; k+1 −�z(Vz)i; j; k+1=2
= �z��ri(!r)i; j+1=2; k+1=2 (28)

which, alternatively, is written as follows:

(Vz)i; j+1; k+1=2 − (Vz)i; j; k+1=2
��

− ri (V�)i; j+1=2; k+1 − (V�)i; j+1=2; k�z
=(r!r)i; j+1=2; k+1=2 (29)

By evaluating Equation (27) at the planes j=const and k=const, respectively, in a similar
way the !� and !z de�nition equations are derived as follows:

(Vr)i+1=2; j; k+1 − (Vr)i+1=2; j; k
�z

− (Vz)i+1; j; k+1=2 − (Vz)i; j; k+1=2
�r

= (!�)i+1=2; j; k+1=2 (30)

(rV�)i+1; j+1=2; k − (rV�)i; j+1=2; k
�r

− (Vr)i+1=2; j+1; k − (Vr)i+1=2; j; k
��

= (r!z)i+1=2; j+1=2; k (31)

As written before the velocities are stored at the grid points and values not evaluated
explicitly at the node points are determined by averaging of neigbouring points. For example:

(V�)i; j+1=2; k= 1
2 ((V�)i; j+1; k + (V�)i; j; k) (32)

Note that the discretized Cauchy–Riemann equations constitute an overdetermined linear
system of equations.
The singularity at r=0 is overcome by replacing Vr(r=0) and V�(r=0) with the Cartesian

components Vxo and Vyo , as shown in Equations (16) and (17). This, of course, yields more
equations than unknowns at the centre axis. But, as we in all cases are dealing with an
overdetermined system, this does not pose any problems in the solution procedure.
The discretized system of equations is expressed as

A V =b (33)

where A is a m× q coe�cient matrix, V is a vector containing q unknown velocity components
and the right-hand vector b contains m elements. This system is overdetermined. To solve
the system, Gatski et al. [19] used an iterative least squares method (Kaczmarz algorithm).
However, the convergence of this method is slow. In order to increase the convergence rate,
a new iterative least squares method is developed. Applying twice a diagonal matrix D and
the transpose matrix AT, we get the normal system of equations as

(ATD D A)V =ATD D b (34)

The diagonal matrix D is chosen so that it weights the equations equally. Hence, the elements
on the diagonal of D are dii= ||ai ||−12 , where ai denotes the i’th row of A. The solution
of Equation (34) is found by applying a standard conjugate gradient method. According to
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Oppe et al. [23] this method is denoted CGNR. To test the ability of the developed method,
a comparative study between the Kaczmarz and the CGNR methods was made by Hansen
[21]. It was shown that the CGNR method is superior and gives good results.
The de�nition of vorticity, Equations (16)–(18), is used to determine the boundary con-

ditions for the vorticity transport equations. Therefore all the discretized vorticity de�nition
equations (33)–(35) touching a boundary are ignored when solving the overdetermined dis-
cretized Cauchy–Riemann equations. None of the discretized continuity equations are ignored.
This method for solving the overdetermined system of discretized Cauchy–Riemann equations
is consistent with the analytical formulation stating that only the normal velocity is needed on
the boundary. It was tested that specifying the vorticity vector as !r=0, !�=0 and !z=2�
yielded a solid body rotation V�=�r, Vr=Vz=0.

4. NUMERICAL RESULTS

To validate the developed algorithm and the proposed boundary conditions, results are pre-
sented for the cases of a developing �ow in a pipe and a rotating �ow in a closed cylinder
where the �uid motion is initiated either by letting an endwall rotate with a constant angular
velocity or by letting it be subject to a translatory motion. The reason for this choice is that
experimental results are available and that both axisymmetric and non-axisymmetric behaviour
can be analysed.

4.1. Developing �ow in a pipe

As a �rst test case we calculate a developing �ow in a pipe. At the entrance of the pipe, the
axial velocity distribution is assumed to be constant or to vary linearly with y. In cylindrical
co-ordinates this is written as

Vz=Vo
(
1 + �

r
R
sin �

)
(35)

where Vo is the mean axial velocity and � is a parameter that determine the rate of shear:

�=R
@
@y

(
Vz
Vo

)

Thus, putting � equal to zero corresponds to axisymmetric �ow conditions, whereas � �=0
gives rise to non-axisymmetric �ow behaviour. Based on mean axial velocity and pipe radius,
the Reynolds number is de�ned as Re=VoR=�.
At �rst, results for �=0 are compared to the measurements of Nikuradse (reproduced in

Reference [24]). In this case it is known from measurements and approximative analytical
studies that the axial length, L, necessary to make the �ow fully developed is determined as
L=0:24R ·Re. In the calculation, we put Re=20 and Lz=5R which ensures that the �ow is
fully developed at the out�ow boundary. The equations are discretized by employing a grid
spacing of NR×NT ×NZ=30× 30× 101 node points.
In Figure 2, calculated axial velocity distributions are compared with measured values as

function of the dimensionless distance, z=Re, at various r=constant lines. It is noted that the
solution remains axisymmetric and thus independent of the �-co-ordinate. Over most of the
pipe the calculations are observed to be in good agreement with the experimental values.
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Figure 2. Axial velocity distributions of the developing �ow in a pipe with �=0, compared with
measured values at various radial positions.

Figure 3. Axial velocity distribution in y − z plane of the developing �ow in a pipe with �=0:2.

To analyse the ability of the code to calculate non-axisymmetric �ows, a computation is
performed setting �=0:2. The in�ow is thus de�ned by a plane shear �ow which, under the
in�uence of viscous forces, gradually becomes parabolic. It should be recalled here that only
the axial velocity is �xed at the in�ow boundary, whereas the two other velocity components
are determined as a result of the calculation. Furthermore, as both !r and !� are non-zero,
axial vorticity will be created from vortex stretching, resulting in the generation of a swirling
motion. In Figure 3, an iso-plot of the calculated axial velocity distribution is depicted in the
y− z plane de�ned by x=0 (corresponding to the two half-planes �=�=2 and �= − �=2). It
is seen that, in the immediate vicinity of the in�ow boundary, the �ow is forced towards the
bottom of the plane. It is interesting to note that �ow passes continuously through the polar
singularity. In Figures 4 and 5, secondary �ow velocity components, Vx and Vy, are shown
in the two planes de�ned by k=11 and 21, respectively. The �ow is observed to perform a
swirling motion and also here no anomalies appear at the polar axis. Finally, Figure 6 depicts
the iso-surface plot of the streamwise vorticity, !z, to demonstrate that the in�ow conditions
create a !z-�eld which is concentrated at the upper part just downstream of the entrance.
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Figure 4. Secondary velocity components, Vx and Vy, of the developing
�ow in a pipe with �=0:2 at k=11.

Figure 5. Secondary velocity components, Vx and Vy, of the developing
�ow in a pipe with �=0:2 at k=21.

Figure 6. Iso-surface plot of the streamwise vorticity, !z=−0:02 and 0.02, of the
developing �ow in a pipe with �=0:2.
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4.2. Flow in a closed cylinder

The second test case concerns a swirling �ow in a closed cylinder, where one of the endwalls
rotates with a constant angular velocity, �, or translates with a constant velocity, Vo. Letting
dimensions be given by the height, H , and the radius, R, the �ow conditions are uniquely
de�ned by the aspect ratio, �=H=R, and the Reynolds number, Re=�R2=� or VoR=�.

4.2.1. Rotating �ow Due to the rotation, a boundary layer on the rotating top wall centrifuges
the �uid outwards to the cylinder wall, from where it spirals in the direction of the �xed
bottom wall. When a �uid element reaches the bottom wall, it is attracted towards the axis
of the cylinder, along which a concentrated vortex is formed. Depending on the Reynolds
number and aspect ratio, this vortex may develop stagnation points and closed stream surfaces,
a phenomenon that has been interpreted as vortex breakdown.
The �rst visualizations of this �ow con�guration were carried out by Vogel [25]. Later, these

visualizations were supplemented by LDA measurements by Ronnenberg [26] and Michelsen
[27]. The �rst systematic study of the �ow structures was performed experimentally by
Escudier [28], who showed that up to three recirculating bubbles on the axis were observed
as � and Re were changed.
Assuming axisymmetric �ow conditions, some of the experimental �ndings have been con-

�rmed numerically by e.g. Lugt and Abboud [29], Daube and SHrensen [30] and Lopez [31].
To validate the developed algorithm, a computation of a cylinder with aspect ratio, �=1,

and Reynolds number, Re=1800, is performed, as in this particular case detailed LDA mea-
surements have been performed by Michelsen [27]. The calculations were carried out by
employing a grid of NR×NT ×NZ=20× 30× 31 node points.
Figure 7 compares computed tangential and radial velocity distributions along r=0:7, 0:8

and 0:9 constant lines with the measurements of Michelsen. The solutions are found to be
independent of the �-direction and in excellent agreement with the measurements over most
of the �ow �eld. Near the boundaries, however, some deviations are seen. It should be noted,
however, that the same deviations were found in earlier comparisons where axi-symmetric
algorithms were utilized [27, 32].

4.2.2. Translating �ow In order to verify the treatment of the centre axis, a computation is
performed for the case of the �ow in a closed cylinder where the top cover is translated with
a constant velocity, Vo. The boundary condition on the top wall becomes

Vr = Vo cos �

V� =−Vo sin �

Due to the translation, a boundary layer is formed on the top wall and the �uid is moved
from left to right (see Figure 8). When a �uid element reaches the lateral wall, it is forced
towards to the �xed bottom wall and performs a motion similar to the �ow in a driving
cavity. Due to the cylindrical geometry, however, a secondary �ow is generated and the �ow
becomes fully 3D.
In Figure 8 velocity vectors are shown in the x–z plane. From the �gure it is seen that

�ow passes continuously through the polar singularity and no e�ects from the treatment at the
centre axis can be observed. The corresponding velocity vectors in the y–z plane are shown
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Figure 7. Velocity distributions Vr (left) and V� (right) of the rotating �ow in a closed cylinder at
r=0:7 (top), 0.8 (middle) and 0.9 (bottom), compared with measurements [27].
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Figure 8. Velocity vectors in the x–z plane of the translating �ow in a closed cylinder at Re=100.

Figure 9. Velocity vectors in the y–z plane of the translating �ow in a closed cylinder at Re=100.

in Figure 9. In this plane, the �ow is symmetrical. Finally, in Figure 10a 3D view of the
iso-surface plot of the absolute vorticity, demonstrates that the computed vorticity is smooth
everywhere in the �ow domain.

5. CONCLUSION

A �nite di�erence method is presented for solving the 3D Navier–Stokes equations in vorticity–
velocity form using cylindrical co-ordinates. The method involves solving simultaneously all
three vorticity transport equations in ‘curl-form’ to numerically ensure a solenoidal vorticity
�eld. The velocity �eld is determined by solving the discretized Cauchy–Riemann equations
using a conjugate gradient method to the normal equations.
A technique to treat the singularity at the polar axis is proposed. For the vorticity �eld, a

staggered grid is used and singular terms are transformed into Cartesian co-ordinates. For the
velocity equations, the problem is solved by implicitly introducing Cartesian components at
the centre axis.
The method is successfully validated by computing the developing laminar �ow in a pipe

and the �ow in a closed cylinder, where one of the end lids is rotating. Both cases are in
good agreement with experimental data. Further, to verify the treatment of the polar centre
axis, the developing laminar �ow in a pipe was recomputed, but with a non-axisymmetric
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Figure 10. Iso-surface plot of the absolute vorticity, || � ||2 =1 and 6, of the translating
�ow in a closed cylinder at Re=100.

in�ow. At some distance downstream, the �ow becomes axisymmetric with the well known
parabolic axial velocity pro�le. To go from the non-axisymmetric in�ow to the fully developed
axisymmetric solution the �ow has to cross the centre axis. It is checked that this occurs
smoothly for both the vorticity and velocity �eld. Also, the closed cylinder was recalculated,
but now the end lid is translated. Due to friction, �uid is dragged in the direction of the
moving lid until it reaches an endwall and is forced away from the lid and then back in the
opposite direction of the moving lid. Again it was demonstrated that the �ow past the centre
axis occurs smoothly.
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